2,712 research outputs found

    Analytical Studies on the Structure and Emission of the SS433 Jets

    Get PDF
    We study the structure and emission of the SS 433 jets in the X-ray emitting region and in the inner and hotter portion inside the X-ray emitting region. In order to consider the jet structure from the inner to outer regions we develop the hybrid model combining the conical beam and the model beam whose cross section grows with the distance more slowly. We find that the jet beams in the inner and hotter portion are of two-temperature and emit a large amount of high energy gamma photons. Our analyses suggest the thick absorbing envelope to exist in the SS 433 system. Based on our results, we discuss the possible acceleration mechanism for the SS 433 jets.Comment: 15 pages. Accepted for publication by Publ. Astron. Soc. Japa

    Re-examination of half-metallic ferromagnetism for doped LaMnO3 in quasiparticle self-consistent GWGW method

    Full text link
    We apply the quasiparicle self-consistent GWGW (\qsgw) method to a cubic virtual-crystal alloy La1x_{1-x}Bax_xMnO3_3 %(LBMO) as a theoretical representative for colossal magnetoresistive perovskite manganites. The \qsgw\ predicts it as a fully-polarized half-metallic ferromagnet for a wide range of xx and lattice constant. Calculated density of states and dielectric functions are consistent with experiments. In contrast, the energies of calculated spin wave are very low in comparison with experiments. This is affected neither by rhombohedral deformation nor the intrinsic deficiency in the \qsgw method. Thus we ends up with a conjecture that phonons related to the Jahn-Teller distortion should hybridize with spin waves more strongly than people thought until now

    Stability of the superfluid state in a disordered 1D ultracold fermionic gas

    Get PDF
    We study a 1D Fermi gas with attractive short range-interactions in a disordered potential by the density matrix renormalization group (DMRG) technique. This setting can be implemented experimentally by using cold atom techniques. We identify a region of parameters for which disorder enhances the superfluid state. As disorder is further increased, global superfluidity eventually breaks down. However this transition occurs before the transition to the insulator state takes place. This suggests the existence of an intermediate metallic `pseudogap' phase characterized by strong pairing but no quasi long-range order.Comment: 5 pages, 5 figure

    Spin wave dispersion based on the quasiparticle self-consistent GWGW method: NiO, MnO and α\alpha-MnAs

    Full text link
    We present spin wave dispersions in MnO, NiO, and α\alpha-MnAs based on the quasiparticle self-consistent GWGW method (\qsgw), which determines an optimum quasiparticle picture. For MnO and NiO, \qsgw results are in rather good agreement with experiments, in contrast to the LDA and LDA+U description. For α\alpha-MnAs, we find a collinear ferromagnetic ground state in \qsgw, while this phase is unstable in the LDA.Comment: V2: add another figure for SW life time. Formalism is detaile

    Hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices

    Full text link
    We investigate the hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices. We construct a suitable scaling limit by using a discrete harmonic map. As we shall observe, the quasi-linear parabolic equation in the limit is defined on a flat torus and depends on both the local structure of the crystal lattice and the discrete harmonic map. We formulate the local ergodic theorem on the crystal lattice by introducing the notion of local function bundle, which is a family of local functions on the configuration space. The ideas and methods are taken from the discrete geometric analysis to these problems. Results we obtain are extensions of ones by Kipnis, Olla and Varadhan to crystal lattices.Comment: 41 pages, 7 figure

    Gamma-ray variability from wind clumping in HMXBs with jets

    Full text link
    In the subclass of high-mass X-ray binaries known as "microquasars", relativistic hadrons in the jets launched by the compact object can interact with cold protons from the star's radiatively driven wind, producing pions that then quickly decay into gamma rays. Since the resulting gamma-ray emissivity depends on the target density, the detection of rapid variability in microquasars with GLAST and the new generation of Cherenkov imaging arrays could be used to probe the clumped structure of the stellar wind. We show here that the fluctuation in gamma rays can be modeled using a "porosity length" formalism, usually applied to characterize clumping effects. In particular, for a porosity length defined by h=l/f, i.e. as the ratio of the characteristic size l of clumps to their volume filling factor f, we find that the relative fluctuation in gamma-ray emission in a binary with orbital separation a scales as sqrt(h/pi a) in the "thin-jet" limit, and is reduced by a factor 1/sqrt(1 + phi a/(2 l)) for a jet with a finite opening angle phi. For a thin jet and quite moderate porosity length h ~ 0.03 a, this implies a ca. 10 % variation in the gamma-ray emission. Moreover, the illumination of individual large clumps might result in isolated flares, as has been recently observed in some massive gamma-ray binaries.Comment: Accepted for publication in ApJ; 5 pages, 1 figur

    Crystal growth and in-plane optical properties of Tl2_2Ba2_2Can1_{n-1}Cun_nOx_x (n=1,2,3) superconductors

    Full text link
    Single crystals of thallium-based cuprates with the general formula Tl2_{2}Ba2_{2}Can1_{n-1}Cun_{n}Ox_{x}(n=1,2,3) have been grown by the flux method. The superconducting transition temperatures determined by the ac magnetic susceptibility are 92 K, 109 K, and 119 K for n=1,2,3 respectively. X-ray diffraction measurements and EDX compositional analysis were described. We measured in-plane optical reflectance from room temperature down to 10 K, placing emphasis on Tl-2223. The reflectance roughly has a linear-frequency dependence above superconducting transition temperature, but displays a pronounced knee structure together with a dip-like feature at higher frequency below Tc_c. Correspondingly, the ratio of the reflectances below and above Tc_{c} displays a maximum and a minimum near those feature frequencies. In particular, those features in Tl2223 appear at higher energy scale than Tl2212, and Tl2201. The optical data are analyzed in terms of spectral function. We discussed the physical consequences of the data in terms of both clean and dirty limit.Comment: 8 pages, 13 figures, to be published in Phys. Rev.

    Lifetime Adherence to Physical Activity Recommendations and Fall Occurrence in Community-dwelling Older Adults: a Retrospective Cohort Study

    Get PDF
    Falling is a major health concern for community-dwelling older adults. Regular physical activity has been proposed to prevent falls. The aim of this study was to assess whether the achievement of the 2004 UK Department of Health physical activity recommendations over a lifetime had a protective effect against falling in older people. 313 community-dwelling older adults completed a questionnaire about lifetime physical activity and fall occurrence. There were significantly fewer falls in those who had led an active lifestyle compared to those who had not (χ2Yates=4.568, p=0.033), with a lower relative risk of fall occurrence for the active respondents (RR=0.671) compared to the inactive (RR=1.210). Of those who were sufficiently active in their early adulthood, the decade where there was the biggest decrease in remaining active enough was in the 60s. It is concluded that an active lifestyle may have decreased the likelihood of having a fall in older ag
    corecore